{"id":252191,"date":"2024-01-31T11:43:05","date_gmt":"2024-01-31T11:43:05","guid":{"rendered":"https:\/\/ingenieros.en-desarrollo.net\/?post_type=project&p=252191"},"modified":"2024-10-17T14:45:45","modified_gmt":"2024-10-17T14:45:45","slug":"ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies","status":"publish","type":"project","link":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/","title":{"rendered":"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies"},"content":{"rendered":"

[et_pb_section fb_built=”1″ _builder_version=”4.25.1″ _module_preset=”default” da_disable_devices=”off|off|off” global_colors_info=”{}” da_is_popup=”off” da_exit_intent=”off” da_has_close=”on” da_alt_close=”off” da_dark_close=”off” da_not_modal=”on” da_is_singular=”off” da_with_loader=”off” da_has_shadow=”on”][et_pb_row _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_text _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”]<\/p>\n

\n
\n

CT is making progress with the IADGENOL R&D project aimed at researching Deep Learning models for the automatic control and characterisation of AWE (Airborne Wind Energy) systems for wind energy generation, forming part of the framework of the Red.es call for proposals.<\/p>\n

In this project, the CT team is investigating the use of state-of-the-art Deep Learning technologies to enhance control and gain a deeper understanding of wind energy generation systems known as AWES.<\/p>\n

The primary objective here is the creation of a Deep Learning-based control model for the automatic trajectory control of AWE systems, as well as employing these models to understand and characterise the dynamic challenges faced by such systems.<\/p>\n

CT has already completed three of the four work packages that were defined, spanning nearly two years of the project\u2019s duration. The remaining aspects include the testing and validation of the developed solution. The project is expected to end in May 2024, and its findings will be presented at the forthcoming Airborne Wind Energy Conference 2024. This event is among the most significant in the sector globally and will be held at Carlos III University in Madrid from 24th to 26th April.<\/p>\n

Phase 1: State-of-the-art study and definition of requirements<\/strong><\/p>\n

In this phase, we explored the current state of airborne energy systems and established the requirements for controlling these systems using advanced technologies. Our work revealed a scarcity of existing research in this field, prompting us to adopt a solution that incorporates reinforcement learning and deep neural networks. We also studied similar models to predict wind at high altitudes.<\/p>\n

Phase 2: Solution design<\/strong><\/p>\n

Here, we established the technological baselines for addressing the automatic control challenges of airborne wind systems. Utilising a simulator and experimental data, we developed and tested our solutions. Various network architectures were evaluated, and a process for data formatting was defined. In partnership with UC3M, this phase included conducting tests to collect\u00a0<\/span>real flight data<\/a>, later used for training the AI models that control the aircraft.<\/p>\n

Phase 3: Solution development<\/strong><\/p>\n

This stage involved implementing and refining the algorithms developed in the previous phase. We focused on creating models for dynamic system characterisation, high-altitude wind prediction, and an automatic controller based on reinforcement learning. These models were trained using both simulated and experimental data. Additionally, we worked on an interface for training and testing these algorithms in a digital environment before their use in the actual system.<\/p>\n

Phase 4: Testing and validation<\/strong><\/p>\n

The final phase involved conducting tests both in the simulated environment and on the actual machine. Tests are to be performed between the months of February and May at our flight test centre in Santa Maria de la Alameda. The aim is to evaluate the performance of the controllers that have been developed and to derive valuable insights for improving and refining our airborne wind system.<\/p>\n<\/div>\n<\/div>\n

[\/et_pb_text][\/et_pb_column][\/et_pb_row][\/et_pb_section][et_pb_section fb_built=”1″ fullwidth=”on” _builder_version=”4.25.1″ _module_preset=”default” da_disable_devices=”off|off|off” global_colors_info=”{}” da_is_popup=”off” da_exit_intent=”off” da_has_close=”on” da_alt_close=”off” da_dark_close=”off” da_not_modal=”on” da_is_singular=”off” da_with_loader=”off” da_has_shadow=”on”][et_pb_fullwidth_slider _builder_version=”4.25.1″ _module_preset=”default” min_height=”500px” global_colors_info=”{}”][et_pb_slide _builder_version=”4.25.1″ _module_preset=”default” background_enable_color=”off” background_image=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/IADGNOL_1-e1706721040668.jpeg” background_enable_image=”on” global_colors_info=”{}” sticky_transition=”on”][\/et_pb_slide][et_pb_slide _builder_version=”4.25.1″ _module_preset=”default” background_enable_color=”off” background_image=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/IADGNOL_2.jpeg” background_enable_image=”on” global_colors_info=”{}” sticky_transition=”on”][\/et_pb_slide][\/et_pb_fullwidth_slider][\/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”4.25.1″ _module_preset=”default” da_disable_devices=”off|off|off” global_colors_info=”{}” da_is_popup=”off” da_exit_intent=”off” da_has_close=”on” da_alt_close=”off” da_dark_close=”off” da_not_modal=”on” da_is_singular=”off” da_with_loader=”off” da_has_shadow=”on”][et_pb_row _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_button button_url=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/CT-studies-automatic-control-of-AWE-system-trajectories-using-advanced-Deep-Learning-technologies.pdf” button_text=”Download the project information” button_alignment=”center” _builder_version=”4.25.1″ _module_preset=”default” custom_button=”on” button_text_color=”#707372″ button_bg_color=”#f7f7f7″ button_border_width=”0px” button_icon=”||divi||400″ button_icon_color=”#707372″ button_icon_placement=”left” button_on_hover=”off” global_colors_info=”{}”][\/et_pb_button][\/et_pb_column][\/et_pb_row][\/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”4.25.1″ _module_preset=”default” background_enable_image=”off” da_disable_devices=”off|off|off” global_colors_info=”{}” da_is_popup=”off” da_exit_intent=”off” da_has_close=”on” da_alt_close=”off” da_dark_close=”off” da_not_modal=”on” da_is_singular=”off” da_with_loader=”off” da_has_shadow=”on”][et_pb_row column_structure=”1_3,1_3,1_3″ make_equal=”on” _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_image src=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/CONBANDERA_REDES_0.jpeg” title_text=”CONBANDERA_REDES_0″ align=”center” _builder_version=”4.25.1″ _module_preset=”default” custom_margin=”60px||||false|false” global_colors_info=”{}”][\/et_pb_image][\/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_image src=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/redes_footer_0.png” title_text=”redes_footer_0″ align=”center” _builder_version=”4.25.1″ _module_preset=”default” custom_margin=”60px||||false|false” global_colors_info=”{}”][\/et_pb_image][\/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_image src=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/Logo-PRTR-tres-lineas_COLOR.png” title_text=”Logo-PRTR-tres-li\u0301neas_COLOR” align=”center” _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][\/et_pb_image][\/et_pb_column][\/et_pb_row][et_pb_row column_structure=”1_3,1_3,1_3″ make_equal=”on” _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_image src=”https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/06\/EN_Funded_by_the_European_Union_RGB_POS.png” title_text=”EN_Funded_by_the_European_Union_RGB_POS” align=”center” _builder_version=”4.25.1″ _module_preset=”default” custom_margin=”50px||50px||true|false” global_colors_info=”{}”][\/et_pb_image][\/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][\/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.25.1″ _module_preset=”default” global_colors_info=”{}”][\/et_pb_column][\/et_pb_row][\/et_pb_section]<\/p>\n","protected":false},"excerpt":{"rendered":"

CT is making progress with the IADGENOL R&D project aimed at researching Deep Learning models for the automatic control and characterisation of AWE (Airborne Wind Energy) systems for wind energy generation, forming part of the framework of the Red.es call for proposals. In this project, the CT team is investigating the use of state-of-the-art Deep Learning technologies to enhance control and gain a deeper understanding of wind energy generation systems known as AWES. The primary objective here is the creation of a Deep Learning-based control model for the automatic trajectory control of AWE systems, as well as employing these models to understand and characterise the dynamic challenges faced by such systems. CT has already completed three of the four work packages that were defined, spanning nearly two years of the project\u2019s duration. The remaining aspects include the testing and validation of the developed solution. The project is expected to end in May 2024, and its findings will be presented at the forthcoming Airborne Wind Energy Conference 2024. This event is among the most significant in the sector globally and will be held at Carlos III University in Madrid from 24th to 26th April. Phase 1: State-of-the-art study and definition of […]<\/p>\n","protected":false},"author":1,"featured_media":251670,"comment_status":"closed","ping_status":"closed","template":"","meta":{"_et_pb_use_builder":"on","_et_pb_old_content":"","_et_gb_content_width":"","footnotes":""},"project_category":[101,106],"project_tag":[114],"class_list":["post-252191","project","type-project","status-publish","has-post-thumbnail","hentry","project_category-energy","project_category-rd","project_tag-airborn-wind-energy-systems"],"yoast_head":"\nCT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group\" \/>\n<meta property=\"og:description\" content=\"CT is making progress with the IADGENOL R&D project aimed at researching Deep Learning models for the automatic control and characterisation of AWE (Airborne Wind Energy) systems for wind energy generation, forming part of the framework of the Red.es call for proposals. In this project, the CT team is investigating the use of state-of-the-art Deep Learning technologies to enhance control and gain a deeper understanding of wind energy generation systems known as AWES. The primary objective here is the creation of a Deep Learning-based control model for the automatic trajectory control of AWE systems, as well as employing these models to understand and characterise the dynamic challenges faced by such systems. CT has already completed three of the four work packages that were defined, spanning nearly two years of the project\u2019s duration. The remaining aspects include the testing and validation of the developed solution. The project is expected to end in May 2024, and its findings will be presented at the forthcoming Airborne Wind Energy Conference 2024. This event is among the most significant in the sector globally and will be held at Carlos III University in Madrid from 24th to 26th April. Phase 1: State-of-the-art study and definition of […]\" \/>\n<meta property=\"og:url\" content=\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/\" \/>\n<meta property=\"og:site_name\" content=\"The CT Engineering Group\" \/>\n<meta property=\"article:modified_time\" content=\"2024-10-17T14:45:45+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg\" \/>\n\t<meta property=\"og:image:width\" content=\"2560\" \/>\n\t<meta property=\"og:image:height\" content=\"1707\" \/>\n\t<meta property=\"og:image:type\" content=\"image\/jpeg\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:site\" content=\"@ctsolutionsg\" \/>\n<meta name=\"twitter:label1\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data1\" content=\"4 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebPage\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/\",\"url\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/\",\"name\":\"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group\",\"isPartOf\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#website\"},\"primaryImageOfPage\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage\"},\"image\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage\"},\"thumbnailUrl\":\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg\",\"datePublished\":\"2024-01-31T11:43:05+00:00\",\"dateModified\":\"2024-10-17T14:45:45+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/\"]}]},{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage\",\"url\":\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg\",\"contentUrl\":\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg\",\"width\":2560,\"height\":1707},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Portada\",\"item\":\"https:\/\/www.ctengineeringgroup.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Projets\",\"item\":\"https:\/\/www.ctengineeringgroup.com\/fr\/project\/\"},{\"@type\":\"ListItem\",\"position\":3,\"name\":\"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#website\",\"url\":\"https:\/\/www.ctengineeringgroup.com\/fr\/\",\"name\":\"CT Solutions\",\"description\":\"\",\"publisher\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/www.ctengineeringgroup.com\/fr\/?s={search_term_string}\"},\"query-input\":{\"@type\":\"PropertyValueSpecification\",\"valueRequired\":true,\"valueName\":\"search_term_string\"}}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#organization\",\"name\":\"CT Solutions\",\"url\":\"https:\/\/www.ctengineeringgroup.com\/fr\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2023\/06\/Logo-CT-Solutions-positive-version.png\",\"contentUrl\":\"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2023\/06\/Logo-CT-Solutions-positive-version.png\",\"width\":1160,\"height\":501,\"caption\":\"CT Solutions\"},\"image\":{\"@id\":\"https:\/\/www.ctengineeringgroup.com\/fr\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/x.com\/ctsolutionsg\"]}]}<\/script>\n","yoast_head_json":{"title":"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/","og_locale":"en_US","og_type":"article","og_title":"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group","og_description":"CT is making progress with the IADGENOL R&D project aimed at researching Deep Learning models for the automatic control and characterisation of AWE (Airborne Wind Energy) systems for wind energy generation, forming part of the framework of the Red.es call for proposals. In this project, the CT team is investigating the use of state-of-the-art Deep Learning technologies to enhance control and gain a deeper understanding of wind energy generation systems known as AWES. The primary objective here is the creation of a Deep Learning-based control model for the automatic trajectory control of AWE systems, as well as employing these models to understand and characterise the dynamic challenges faced by such systems. CT has already completed three of the four work packages that were defined, spanning nearly two years of the project\u2019s duration. The remaining aspects include the testing and validation of the developed solution. The project is expected to end in May 2024, and its findings will be presented at the forthcoming Airborne Wind Energy Conference 2024. This event is among the most significant in the sector globally and will be held at Carlos III University in Madrid from 24th to 26th April. Phase 1: State-of-the-art study and definition of […]","og_url":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/","og_site_name":"The CT Engineering Group","article_modified_time":"2024-10-17T14:45:45+00:00","og_image":[{"width":2560,"height":1707,"url":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg","type":"image\/jpeg"}],"twitter_card":"summary_large_image","twitter_site":"@ctsolutionsg","twitter_misc":{"Est. reading time":"4 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebPage","@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/","url":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/","name":"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies - The CT Engineering Group","isPartOf":{"@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#website"},"primaryImageOfPage":{"@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage"},"image":{"@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage"},"thumbnailUrl":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg","datePublished":"2024-01-31T11:43:05+00:00","dateModified":"2024-10-17T14:45:45+00:00","breadcrumb":{"@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#primaryimage","url":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg","contentUrl":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2024\/05\/AdobeStock_488359820-scaled-1.jpeg","width":2560,"height":1707},{"@type":"BreadcrumbList","@id":"https:\/\/www.ctengineeringgroup.com\/project\/ct-studies-automatic-control-of-awe-system-trajectories-using-advanced-deep-learning-technologies\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Portada","item":"https:\/\/www.ctengineeringgroup.com\/"},{"@type":"ListItem","position":2,"name":"Projets","item":"https:\/\/www.ctengineeringgroup.com\/fr\/project\/"},{"@type":"ListItem","position":3,"name":"CT studies automatic control of AWE system trajectories using advanced Deep Learning technologies"}]},{"@type":"WebSite","@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#website","url":"https:\/\/www.ctengineeringgroup.com\/fr\/","name":"CT Solutions","description":"","publisher":{"@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/www.ctengineeringgroup.com\/fr\/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#organization","name":"CT Solutions","url":"https:\/\/www.ctengineeringgroup.com\/fr\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#\/schema\/logo\/image\/","url":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2023\/06\/Logo-CT-Solutions-positive-version.png","contentUrl":"https:\/\/www.ctengineeringgroup.com\/wp-content\/uploads\/2023\/06\/Logo-CT-Solutions-positive-version.png","width":1160,"height":501,"caption":"CT Solutions"},"image":{"@id":"https:\/\/www.ctengineeringgroup.com\/fr\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/x.com\/ctsolutionsg"]}]}},"_links":{"self":[{"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project\/252191","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project"}],"about":[{"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/types\/project"}],"author":[{"embeddable":true,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/comments?post=252191"}],"version-history":[{"count":5,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project\/252191\/revisions"}],"predecessor-version":[{"id":258543,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project\/252191\/revisions\/258543"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/media\/251670"}],"wp:attachment":[{"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/media?parent=252191"}],"wp:term":[{"taxonomy":"project_category","embeddable":true,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project_category?post=252191"},{"taxonomy":"project_tag","embeddable":true,"href":"https:\/\/www.ctengineeringgroup.com\/wp-json\/wp\/v2\/project_tag?post=252191"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}